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Abstract 

Magnetohydrodynamic flows in insulated circular ducts in nonuniform magnetic fields are 

studied with reference to liquid metal blankets and divertors of fusion reactors. Particular 

emphasis is made on C-MOD. The ducts are supposed to be straight, while the gradient of the 

magnetic field to be inclined by an angle α to the duct axis. The results are presented for the 

values of the Hartmann numbers, Ha, of 1000 and 100. Three-dimensional pressure drop, 

development length, three-dimensional length and nonuniformities of the velocity profiles have 

been evaluated.  It has been shown that for Ha = 1000 the three-dimensional effects are of 

considerable importance, while for Ha = 100 they may be neglected. 
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1.  Introduction 

 

Liquid metal flows in circular ducts play a fundamental role in liquid metal  blankets and 

divertors for fusion reactors. Concerning blankets, both inlet and outlet pipes have circular cross-

section. The flow in these pipes is fully three-dimensional, since liquid metal flows in a strong, 

nonuniform magnetic field. Similar situation occurs in circular ducts supplying liquid metal to 

divertors elements [1], [2].  

When a liquid metal flows in a strong magnetic field, electric currents are induced. These 

currents in turn interact with the magnetic field and the resulting electromagnetic force induces a 

high MHD pressure drop and significant nonuniformities of the velocity profile in the duct cross-

section. The pressure drop in particular is considered to be one of the most critical issues for self-

cooled blankets. The magnitude of the electromagnetic force with respect to viscous and inertial 

forces is determined by two parameters, the Hartmann number, Ha, and the interaction parameter, 

N, respectively. The range of typical parameter values for various machines, based on lithium 

flow in circular, insulated ducts (or jets) of 5-10 mm radius, is shown in Table 1.  

As the three-dimensional effects in blanket/divertor elements are of considerable importance, 

laminar, inertialess MHD flow in an insulating circular duct in a strong, nonuniform magnetic 

field is studied in this paper. The emphasis is on the range of parameters relevant to C-MOD. 

Some estimates are given for NSTX as well, though it should be emphasised that the flow regime 

in this machine is different (Table 1). The flow regime is determined by the parameter Ha/Re [3], 

where Re is the Reynolds number. According to the experimental data for circular insulating 

ducts [3], for Ha/Re > 0.025 the flow is laminar, while for Ha/Re < 0.025 it is turbulent. The 

latter regime is characteristic for NSTX.  
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Both the flow geometry studied here and the Cartesian co-ordinate system (x, y, z) are shown 

in Figs. 1 and 2. Cylindrical co-ordinates (r, θ, x) are also used, which are defined as follows (see 

Fig. 2): θ= sinrz , θ= cosry . The magnetic field yB ˆ),(0 zxBB∗∗ =  is supposed to have a single 

component, out of the plane of the figure, where ∗
0B  is the characteristic value of the magnetic 

field in the upstream region, i.e. for −∞→x . Dimensional quantities are denoted by letters with 

asterisks, while their dimensionless counterparts - with the same letters, but without the asterisks.   

The inlet/outlet pipes may enter/leave the tokamak area at a certain, small angle α to the 

gradient of the toroidal field (Fig. 1). One of the aims of the current study is to estimate 

sensitivity of the three-dimensional pressure drop Dp3∆  to the variation of α.  

The family of the magnetic fields studied here is  ( ) ( ) γξ−++=ξ tanh)( 2
1

2
1

udud BBBBB , 

where α+α=ξ sincos zx . The field induction varies between the constant values of Bu = 1 to 

the left of Line 1 and Bd to the right of Line 2 (see Fig. 1). The field is nonuniform between these 

lines. The field gradient is defined by γ. For α = 0o one gets ξ = x, thus the field gradient is 

aligned with the duct axis.  

The aim of the study is to estimate the values of Dp3∆ , the development length, as well as 

nonuniformities in the velocity profiles owing to the nonuniform magnetic field.  

 

2.  Formulation 

 

Consider a steady flow of a viscous, electrically conducting, incompressible fluid in a 

straight, insulating, circular duct in the x-direction (Figs. 1, 2). The characteristic values of the 

length, the fluid velocity, the electric current density, the electric potential, and the pressure are 
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∗a  (the duct radius), ∗
0v  (average fluid velocity), ∗∗σ 00 Bv , ∗∗∗

00Bva , and 2
00
∗∗∗σ Bva , respectively. In 

the above, σ, ρ, ν are the electrical conductivity, density and kinematic viscosity of the fluid.  

It is assumed that the flow is inertialess, which requires N >> Ha1/2 [4], where 

2/1
0 )/( ρνσ= ∗∗BaHa  is the Hartmann number, which expresses the ratio of the electromagnetic to 

the viscous force, and ∗∗∗ ρσ= 0
2

0 / vBaN  is the interaction parameter, which expresses the ratio of 

the electromagnetic to the inertial force. 

The dimensionless, inductionless, inertialess equations governing the flow are [5], [6]: 

 pHa ∇=×+∇− Bjv22 ,    Bvj ×+φ−∇= , (1a,b) 

 0=⋅∇ v ,    0=⋅∇ j , (1c,d)  

where v is the fluid velocity, j is the electric current density, φ is the electric potential, and p is 

the pressure. 

The boundary conditions at the duct wall are the no-slip- and the insulating-wall- conditions: 

 v = 0,   0=rj    at r = 1, (1e) 

where jr is the radial component of current.  

Far upstream and far downstream the flow is fully developed, which requires 

 0→∂∂ zp ,   0→∂φ∂ x    as ±∞→x . (1f,g) 

Finally, the solution is normalized using the condition of a fixed average velocity: 

 ∫ ∫
π

π−

π=θ
2/

2/

1

0

2 rudrd , (1h) 

where u is the x-component of velocity. 
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3.  High-Ha flow model 

 

In a sufficiently strong magnetic field the flow region splits into the following subregions 

(Fig. 2): the core C, the Hartmann layer H of thickness O(Ha-1) at the wall, and the Roberts layers 

E  with dimensions )()( 3/23/1 −− × HaOHaO  at θ = ±π/2, r = 1. The details of the high-Ha model, 

valid for terms up to O(Ha-1) are given in [7] (see also [6], [8], [9]), and thus are omitted here. 

The analysis leads to two two-dimensional  partial differential equations for the core pressure 

P(x,z) and the wall electric potential ),( zxΦ . These equations, subject to appropriate boundary 

conditions, are solved numerically on a non-equidistant grid, using a finite-difference method 

described in [6]. For a typical calculation we use 257 points in the x-direction and 43 points in the 

z-direction. The length of the computational domain is lcomp = 100 (see Fig. 1), while the other 

parameters are: γ = 0.8, Bd  = 0.2, Bu = 1 (flow out of the intense-field region).  

 

4. Results 

 

The three-dimensional effects are assessed using such characteristics as the three-

dimensional pressure drop and the three-dimensional length.   

The three-dimensional pressure drop, Dp3∆  is defined as follows: 

 ( )ducompD BBlHapp −π−∆=∆ −1
16
3

3 , (2) 

where ∆p is the total pressure drop between points x = - lcomp/2 and x = lcomp/2. In this definition 

the fully developed pressure gradients far upstream and far downstream given by the expressions 

dudu
BHadxdp ,

1
8
3

,
/ −π−=  are extended up to x = 0.  
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The three-dimensional length, Dd3 , is defined as follows [6], [7]: 

 D

u

D
D p

Ha

dxdp

p
d 3

3
3 3

8
/

∆
π

=
∆

−= . (3) 

 

3.1  Flow for α = 0o  

Far upstream and far downstream from the nonuniform-field region the flow is fully 

developed. It is driven by the pressure gradients 
du

dxdp
,

/ , respectively. In these regions both the 

core velocity uCu,d and the wall electric potential may be approximated to O(1) by the expressions 

 2
8
3

, 1 zu dCu −π= ,    [ ]zzzB dudu arcsin1 2
,16

3
, +−π=Φ , (4a,b) 

respectively (see [6]-[9]).  

Since Bu ≠ Bd, from Eq. (4b) follows that for any fixed value of z ≠ 0 there is a difference in 

the values of potential upstream and downstream. This axial potential difference drives axial 

electric currents and causes the three-dimensional effects.  

 The interaction of the magnetic field with the axial current pushes the fluid from the center 

of the duct to the sides in the upstream region, and peaks of axial velocity appears at the side 

regions (Fig. 3). The development of the axial velocity profiles at y = 0 along the duct axis and at 

the side region for Ha = 1000 and for Ha = 100 is shown in Fig. 3. Since the fluid is pushed 

towards the side regions, a zone with reduced velocity develops in the center of the duct (Fig. 3). 

The flow in this zone is stagnant for Ha = 1000. 

 For Ha =1000 the development lengths in the upstream and the downstream regions are:  

ldev,u = 9.5 and ldev,d = 7.5, respectively. Thus the total development length is ldev = 17 duct radii. 
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 The development of the core pressure along the duct along the axis and in the side region for 

Ha = 1000 and for Ha = 100 is shown in Fig. 4. For Ha = 1000 the pressure values deviate from 

the fully developed ones in the region –6 ≤ x ≤ 3 owing to the three-dimensional effects. There is 

a partial pressure recovery at z = 0 in the region –0.5 ≤ x ≤ 3 owing to the returning current. 

 The three-dimensional pressure drop Dp3∆ , shown in Fig. 4, is 1.48· 10-2 for Ha = 1000 and 

4· 10-2 for Ha = 100, respectively. This gives the respective values of the three-dimensional 

length, d3D, of 12.5 and 3.4. This means that for Ha = 1000 the three-dimensional effects are 

significant, while for Ha = 100 they can be neglected.  

 

3.2  Flow for α ≠≠ 0o  

For α ≠ 0o  the flow becomes non-symmetric with respect to z. Both pressure and potential at 

z ≈ 1 drop sooner than those at z ≈ -1. This is because for a fixed x the magnetic field at z = 1 is 

lower. As a result, in the nonuniform field region more fluid flows at z = 1 than at z = -1. For  

Ha = 1000 the peaks of velocity in these regions are 7.23 and 6.65, respectively (Fig. 5). 

However, these values are only marginally lower than 7.33 for the flow for α = 0o. 

Variation of Dp3∆  with α for Ha = 1000 is shown in Fig. 6. It is seen that Dp3∆  decreases 

with increasing α. However, it remains almost constant for α ≤ 30o. Overall, most of the flow 

features remain the same as those for α = 0o up to 30o.  

 

5. Conclusions 

 

For values of Ha relevant to C-MOD the three-dimensional effects in insulating circular 

ducts in a nonuniform magnetic field are expected to be of considerable importance. The three-
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dimensional pressure drop is equivalent to the extension of ducts with fully developed flow by 12 

duct radii. The nonuniformity of the fluid velocity is significant as well with velocity peaks 

reaching the value of about 7 times the average one. The development length resulting from the 

nonuniform field is about 17 duct radii. This means that the three-dimensional effects from 

various blanket/divertor elements may overlap, and the whole device may need to be treated as a 

single piece. Nevertheless, owing to much lower Hartmann numbers, three-dimensional effects in 

C-MOD will be of less importance than in large-scale machines, such as ARIES [6], [9]. Flows 

for  α < 30o are qualitatively the same as for α = 0o. 
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Table 1 Typical values of parameters and flow regimes for various machines 

 LARGE-SCALE 

MACHINES, E.G. 

ITER, ARIES 

C-MOD NSTX 

Hartmann number, Ha ~103-105 ~500-3000 ~50-400 

Interaction parameter, N ~103-104 ~50-200 ~1 

Reynolds number, Re ~104-105 ~104-105 ~104-105 

Criterion of transition to 

turbulence, Ha/Re 

~0.1 ~0.03 ~0.003 

Most likely flow 

regimes 

Laminar MHD flow Laminar MHD flow; 

possibly turbulent 

MHD flow in some 

elements of the 

blankets/divertors 

Turbulent 

MHD flow  
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Figure captions 

 

Fig. 1  Schematic diagram of the flow in a straight circular duct: (a) nonuniform magnetic field 

and (b) projection of the duct on the (x,z)-plane 

Fig. 2 Cross-section of a circular duct and flow subregions for high Ha. 

Fig. 3 Axial velocity at y = 0 for different values of z and for α = 0o. 

Fig. 4 Variation of pressure with x for different values of z and the three-dimensional pressure 

drop for α = 0o. 

Fig. 5 Axial velocity at y = 0 for Ha = 1000 and for α = 20o. 

Fig. 6 Variation of the three-dimensional pressure drop with α. 

 

 

 



x

x

z

-1

0

0

B

1

-lcomp/2 lcomp/2

B
Bu

Bd

Flow

z = -1

z = 0
z = 1

field gradient
α

Line 1 Line 2

z x= - cotα

ξ

(a)

(b)

Fig. 1
Molokov and Reed. Liquid Metal flows...



z

y

0 1-1

-1

1

O(Ha )-1

Hartmann layer H

Core C

E E

Roberts layers

B

r

θ

O(Ha )-2/3

O(Ha )-1/3

Fig. 2
Molokov and Reed. Liquid Metal flows...



x

-10 -8 -6 -4 -2 0 2 4 6 8 10

uC

0

1

2

3

4

5

6

7 Ha = 1000, z = 0
Ha = 1000, z = 0.97
Ha = 100,   z = 0
Ha = 100,   z = 0.84

Fig. 3
Molokov and Reed. Liquid Metal Flows...



x

-8 -6 -4 -2 0 2 4 6 8

P

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ha = 1000, z = 0
Ha = 1000, z = 0.97
Ha = 100,   z = 0
Ha = 100,   z = 0.84

∆p3D

Fig. 4
Molokov and Reed. Liquid Metal Flows...

∆p3D



-2

0

2

4

6

8

-8
-4

0
4

8

-1.0

-0.5

0.0

0.5

uC

x

z

Fig. 5
Molokov and Reed. Liquid Metal Flows...



α

0 10 20 30

∆p3D

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Ha = 1000
Ha = 100

Fig. 6
Molokov and Reed. Liquid Metal Flows...


